(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
p(s(x)) → x
p(0) → 0
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
average(x, y) → if(le(x, 0), le(y, 0), le(y, s(0)), le(y, s(s(0))), x, y)
if(true, b1, b2, b3, x, y) → if2(b1, b2, b3, x, y)
if(false, b1, b2, b3, x, y) → average(p(x), s(y))
if2(true, b2, b3, x, y) → 0
if2(false, b2, b3, x, y) → if3(b2, b3, x, y)
if3(true, b3, x, y) → 0
if3(false, b3, x, y) → if4(b3, x, y)
if4(true, x, y) → s(0)
if4(false, x, y) → average(s(x), p(p(y)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
p(s(x)) → x
p(0') → 0'
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
average(x, y) → if(le(x, 0'), le(y, 0'), le(y, s(0')), le(y, s(s(0'))), x, y)
if(true, b1, b2, b3, x, y) → if2(b1, b2, b3, x, y)
if(false, b1, b2, b3, x, y) → average(p(x), s(y))
if2(true, b2, b3, x, y) → 0'
if2(false, b2, b3, x, y) → if3(b2, b3, x, y)
if3(true, b3, x, y) → 0'
if3(false, b3, x, y) → if4(b3, x, y)
if4(true, x, y) → s(0')
if4(false, x, y) → average(s(x), p(p(y)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
p(s(x)) → x
p(0') → 0'
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
average(x, y) → if(le(x, 0'), le(y, 0'), le(y, s(0')), le(y, s(s(0'))), x, y)
if(true, b1, b2, b3, x, y) → if2(b1, b2, b3, x, y)
if(false, b1, b2, b3, x, y) → average(p(x), s(y))
if2(true, b2, b3, x, y) → 0'
if2(false, b2, b3, x, y) → if3(b2, b3, x, y)
if3(true, b3, x, y) → 0'
if3(false, b3, x, y) → if4(b3, x, y)
if4(true, x, y) → s(0')
if4(false, x, y) → average(s(x), p(p(y)))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
le :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
average :: s:0' → s:0' → s:0'
if :: true:false → true:false → true:false → true:false → s:0' → s:0' → s:0'
if2 :: true:false → true:false → true:false → s:0' → s:0' → s:0'
if3 :: true:false → true:false → s:0' → s:0' → s:0'
if4 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
le,
averageThey will be analysed ascendingly in the following order:
le < average
(6) Obligation:
Innermost TRS:
Rules:
p(
s(
x)) →
xp(
0') →
0'le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
average(
x,
y) →
if(
le(
x,
0'),
le(
y,
0'),
le(
y,
s(
0')),
le(
y,
s(
s(
0'))),
x,
y)
if(
true,
b1,
b2,
b3,
x,
y) →
if2(
b1,
b2,
b3,
x,
y)
if(
false,
b1,
b2,
b3,
x,
y) →
average(
p(
x),
s(
y))
if2(
true,
b2,
b3,
x,
y) →
0'if2(
false,
b2,
b3,
x,
y) →
if3(
b2,
b3,
x,
y)
if3(
true,
b3,
x,
y) →
0'if3(
false,
b3,
x,
y) →
if4(
b3,
x,
y)
if4(
true,
x,
y) →
s(
0')
if4(
false,
x,
y) →
average(
s(
x),
p(
p(
y)))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
le :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
average :: s:0' → s:0' → s:0'
if :: true:false → true:false → true:false → true:false → s:0' → s:0' → s:0'
if2 :: true:false → true:false → true:false → s:0' → s:0' → s:0'
if3 :: true:false → true:false → s:0' → s:0' → s:0'
if4 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
le, average
They will be analysed ascendingly in the following order:
le < average
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_s:0'3_0(
n5_0),
gen_s:0'3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
le(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
p(
s(
x)) →
xp(
0') →
0'le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
average(
x,
y) →
if(
le(
x,
0'),
le(
y,
0'),
le(
y,
s(
0')),
le(
y,
s(
s(
0'))),
x,
y)
if(
true,
b1,
b2,
b3,
x,
y) →
if2(
b1,
b2,
b3,
x,
y)
if(
false,
b1,
b2,
b3,
x,
y) →
average(
p(
x),
s(
y))
if2(
true,
b2,
b3,
x,
y) →
0'if2(
false,
b2,
b3,
x,
y) →
if3(
b2,
b3,
x,
y)
if3(
true,
b3,
x,
y) →
0'if3(
false,
b3,
x,
y) →
if4(
b3,
x,
y)
if4(
true,
x,
y) →
s(
0')
if4(
false,
x,
y) →
average(
s(
x),
p(
p(
y)))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
le :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
average :: s:0' → s:0' → s:0'
if :: true:false → true:false → true:false → true:false → s:0' → s:0' → s:0'
if2 :: true:false → true:false → true:false → s:0' → s:0' → s:0'
if3 :: true:false → true:false → s:0' → s:0' → s:0'
if4 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
average
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol average.
(11) Obligation:
Innermost TRS:
Rules:
p(
s(
x)) →
xp(
0') →
0'le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
average(
x,
y) →
if(
le(
x,
0'),
le(
y,
0'),
le(
y,
s(
0')),
le(
y,
s(
s(
0'))),
x,
y)
if(
true,
b1,
b2,
b3,
x,
y) →
if2(
b1,
b2,
b3,
x,
y)
if(
false,
b1,
b2,
b3,
x,
y) →
average(
p(
x),
s(
y))
if2(
true,
b2,
b3,
x,
y) →
0'if2(
false,
b2,
b3,
x,
y) →
if3(
b2,
b3,
x,
y)
if3(
true,
b3,
x,
y) →
0'if3(
false,
b3,
x,
y) →
if4(
b3,
x,
y)
if4(
true,
x,
y) →
s(
0')
if4(
false,
x,
y) →
average(
s(
x),
p(
p(
y)))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
le :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
average :: s:0' → s:0' → s:0'
if :: true:false → true:false → true:false → true:false → s:0' → s:0' → s:0'
if2 :: true:false → true:false → true:false → s:0' → s:0' → s:0'
if3 :: true:false → true:false → s:0' → s:0' → s:0'
if4 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
p(
s(
x)) →
xp(
0') →
0'le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
average(
x,
y) →
if(
le(
x,
0'),
le(
y,
0'),
le(
y,
s(
0')),
le(
y,
s(
s(
0'))),
x,
y)
if(
true,
b1,
b2,
b3,
x,
y) →
if2(
b1,
b2,
b3,
x,
y)
if(
false,
b1,
b2,
b3,
x,
y) →
average(
p(
x),
s(
y))
if2(
true,
b2,
b3,
x,
y) →
0'if2(
false,
b2,
b3,
x,
y) →
if3(
b2,
b3,
x,
y)
if3(
true,
b3,
x,
y) →
0'if3(
false,
b3,
x,
y) →
if4(
b3,
x,
y)
if4(
true,
x,
y) →
s(
0')
if4(
false,
x,
y) →
average(
s(
x),
p(
p(
y)))
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
le :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
average :: s:0' → s:0' → s:0'
if :: true:false → true:false → true:false → true:false → s:0' → s:0' → s:0'
if2 :: true:false → true:false → true:false → s:0' → s:0' → s:0'
if3 :: true:false → true:false → s:0' → s:0' → s:0'
if4 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)